A Renewed Emphasis on Therapeutic Angiogenesis Research for CAD

Up to now, unblocking clogged arteries for so-called no-option patients with coronary artery disease or congestive heart failure hasn’t been possible. Angiogenesis research, despite previous setbacks, may be the answer for this group of patients.

By Jack Jacobs, PhD

Any experienced traffic cop knows that an overturned truck blocking a major artery into a city requires a rapid, two-pronged response. The ultimate goal is to right and remove the truck, thus relieving the backup. In the meantime, diverting traffic away from the clogged artery and identifying a free-flowing detour into the city can alleviate the crisis by keeping traffic moving, allowing commuters to get to their jobs to provide the life force needed to keep the city functioning at peak capacity.

A physician treating a patient with blocked coronary arteries due to atherosclerosis has much in common with a traffic cop. Ultimately the physician would like to clear the blocked arteries and reinstate maximal blood flow to the heart muscle that is being starved of oxygen and nutrients.

Several options are available to achieve this goal: pharmaceutical approaches to combat atherosclerotic plaque build-up; surgical bypass procedures to graft functioning arteries from other parts of the body onto the heart; balloon-based and laser techniques to clear the blockages; and the use of stents, plain or medicated, to keep the treated passages open (See “The Scope of CVD and the Economics of Angiogenesis Therapy,” page 51). These options vary in effectiveness, risk, cost, and outcomes. No one solution is the answer for every patient, but for a significant share (5 to 21 percent) of patients with coronary artery disease (CAD) or congestive heart failure (CHF), there are no options (Lee 2006).

So-called “no-option” heart patients, who have refractory symptoms despite maximal medical therapy, may have microvascular disease — more commonly seen in women — for which no main target for blockage-busting therapy exists. They also may suffer from comorbidities or physiologic complications that make them poor candidates for available treatments, or have disease that is too mild to warrant traditional bypass or artery-opening procedures (Mukherjee 2004).

FAILURE AND HOPE

No-option patients are ideal candidates for therapeutic angiogenesis — a proven and safe method of stimulating the natural process of new blood vessel formation (Simons 2005, Ruel 2004). The vessels formed are not different from those already present in the body. Early concerns that angiogenesis-inducing growth factors would promote tumor growth have not been supported by clinical study results. Although angiogenic growth factors may stimulate the growth of an existing malignancy, de novo tumor formation is not considered to be a significant risk (Simons 2005).

The challenge that therapeutic angiogenesis faces lies in demonstrating the ability to deliver angiogenic treatment to a target organ or tissue and to limit the effects of treatment to the target tissue, as well as provide evidence of new vessel growth and associated improve-
ment in symptoms, clinical outcomes, and long-term patient management. The promise of therapeutic angiogenesis has been touted for many years but, until recently, performance has not lived up to the promise (Ruel 2004).

Numerous studies in animals with induced cardiac ischemia have demonstrated the potential value of angiogenic therapy, whether the angiogenic factors that promote the growth of new blood vessels have been delivered via a protein, gene, or cell. Yet, the wealth of positive animal data has translated into only limited success in human trials.

Why has this been the case? More importantly, what has changed to offer renewed hope that therapeutic angiogenesis can provide an effective and cost-efficient means of healing diseased hearts and improving the lives of patients with limited cardiac function?

ANGIOGENESIS ADVANTAGES

Treatments to promote angiogenesis mimic a natural process in which the body responds to a diminished blood supply to vital tissues and organs, whether due to disease, trauma, or physiologic abnormalities, by producing new collateral vessels to resupply the ischemic region. The road map of new vessels created provides multiple alternative paths for blood to reach the damaged tissue.

Angiogenesis is an attractive therapeutic target for three reasons:

- It is a natural bodily process.
- Its physiology and mechanisms are well understood and have been intensively studied.
- A variety of potent growth factors that drive and regulate this process in the body have been identified. These proteins can be manufactured in quantities required for therapeutic dosing, and the growth factors (or compounds that stimulate their production) can be administered to patients via various delivery methods and routes.

In adult organisms, in the absence of disease, the endothelial cells that line the blood vessels typically exist in a quiescent, non-proliferative state. Trauma or disease and the associated inflammation and reduced oxygen supply that may stimulate the natural angiogenic process and choreograph complex processes that lead to the formation of new vessels. These signaling molecules induce a cascade of events mediated by growth factors and other molecules that transmit signals within and between cells.

Angiogenesis begins with the breakdown of the basement membrane and extracellular matrix underlying the endothelial cell lining of blood vessels, the migration, recruitment, and proliferation of endothelial cells that adhere to the site of new vessel formation, and the construction of a new three-dimensional hollow vessel capable of supporting blood circulation. The tubular structure lengthens as new matrix and cellular components are deposited at the growing end of the nascent vessel.

HELPING THE HEART TO HEAL

The three approaches to therapeutic angiogenesis currently in development are gene therapy, cell-based therapy, and the delivery of protein growth factors, either systemically or directly to the site of the diseased tissue. Each offers advantages and disadvantages in terms of delivery, safety, efficacy, cost of commercialization and administration, and regulatory considerations. And each relies on a variety of growth factors, chemokines, and transcription factors that induce neovascularization (Losordo 2004).

Gene therapy. In general, gene therapy-based angiogenesis — using adenovirus or retrovirus vectors or nonviral plasmid DNA vectors to deliver genes that produce angiogenic factors in the heart’s muscle cells — has not demonstrated sufficient efficacy or, like gene therapy in general, has been plagued by safety concerns. Most angiogenesis trials in CVD to date involve nonviral vectors and an intracoronary or intramyocardial route of delivery (Ruel 2004, Losordo 2004, Freedman 2002).

Atlanta-based Corautus Genetics initiated the Genetic Angiogenic Stimulation Investigational Study (GENASIS) trial in August 2004, using plasmid DNA to deliver the vascular endothelial growth factor (VEGF)-2 gene directly to the heart.
The scope of CVD and the economics of angiogenesis therapy

Cardiovascular disease (CVD) comprises coronary heart disease (CHD), congenital vascular defects, heart failure, stroke, high blood pressure, and peripheral arterial disease (PAD). It affects 71.3 million Americans, and is the underlying cause of more than a third of all U.S. deaths each year. CVD is responsible for nearly half of all deaths in Europe, and CHD alone is the leading cause of death among both men and women.

Every day, nearly 2,500 Americans die from CVD. CVD exacts an enormous toll in terms of healthcare costs and quality of life. In 2006, combined direct and indirect costs of care for Americans with CVD exceeded $400 billion. As the population ages, the number of individuals with some form of CVD also is likely to grow.

Coronary artery disease (CAD) is characterized by atherosclerotic plaque buildup in the arteries that supply the heart muscle. Over time, accumulation of plaque and the scar tissue that may form as the body’s inflammatory response tissue damage sites can cause blockage of the arteries. Plaque instability may result in a portion of the plaque breaking away and traveling through the circulation, with the potential to cause complete blockage of a smaller vessel, resulting in a myocardial infarction, ischemia, and death of the affected area of heart muscle. As CAD increases in severity, it can cause angina (pain on stress or exertion) and limited heart function.

The therapeutic market for CAD exceeds $25 billion in the United States. Diagnosis of early to intermediate-stage CAD with or without angina typically leads to medical management, with a range of options that may include coronary artery bypass graft (CABG), percutaneous transluminal coronary angioplasty (PTCA), or the use of stents to open a blocked artery. When these treatments fail or patients are not candidates for available pharmaceutical or surgical therapies, they are classified as “no-option” patients. Of the 100 million or more Americans with CAD risk factors, about 13 million will develop CAD; 6 to 7 million, angina; 1.5 to 2 million will be at high risk of an acute event. About 25 percent of this latter group — 250,000 to 500,000 patients — will ultimately fall into the no-option category.

The no-option population is an ideal target for new treatment strategies such as therapeutic angiogenesis. In the future, the definition of no-option patients could expand to include individuals with the following conditions:

- **Mild CAD** (less than 50 percent occlusion) — not yet candidates for CABG or PTCA, but drug therapy is insufficient
- **Silent ischemia** — increased risk of acute events despite absence of angina
- **Chronic total occlusion** — high failure rate with CABG and PTCA
- **Comorbidities** (e.g., diabetes, elevated cholesterol) — no therapeutic options beyond pharmaceutical management
- **Multiple (five or more) sites of vessel occlusion** — may not be able to target or successfully treat all with CABG/PTCA
- **Oclusions affecting the smaller vessels** (diffuse microvascular disease) or dysfunction of the microvasculature — no good treatment options beyond routine drug therapy

Economic models demonstrating the potential for substantial cost savings in the no-option population predict that angiogenic therapy can reduce by about half the costs associated with treating refractory angina, and can eliminate the need for “mercy” CABG/PTCA procedures, with no related complications and a five-year duration of effect. The projected cost of fibroblast growth factor (FGF)-1 therapy, for example, is $20,000 per treatment. If all no-option patients were treated with FGF-1, the model forecasts a savings of as much as 20 percent of current standard of care costs over a 5-year period. FGF-1 use could cut in half the number of MIs over 5 years, allowing more than 160 of each 1,000 no-option patients who likely would have had one or more MIs to go unafflicted. The economic model projects that overall cumulative cost savings over 5 years for treating 1,000 no-option patients with FGF-1 could reach $48 million. Indirect savings recouped from restored work time and increased productivity as a result of raising work capacity from 80 percent to 90 percent for these patients has been estimated at $7 million per year.

Sources: American Heart Association; Cardiovascular Biotherapeutics 2007 Annual Report
The potential of angiogenic therapy lies in the delivery of potent and safe angiogenic growth factors directly to the damaged heart.
naling cascades, or of preventing ac-
tivation of transcription factors in
the nucleus. Other small-molecule
agonists bind to cellular or nuclear
receptors to stimulate production
of a specific protein. A growing
number of monoclonal antibody-
based therapeutics bind directly to
errant proteins, targeting them for
destruction or removal.

Direct administration of therapeu-
tic proteins is challenging. Typ-
ically, these are large, structurally
complex molecules, the correct
three-dimensional conformation of
which is critical for their function.
Oral administration of these mole-
cules is complicated by their pro-
pensity to be broken down in the in-
testinal tract and cleared from the
circulation. Thus, routes of delivery
other than by mouth often include
intramuscular, intravenous, or
intra-arterial injection, along with
various techniques for direct deliv-
ery to the target site of action.

Another challenging feature of
protein therapy stems from the ex-
istence of large multidimensional
protein families, the individual
members of which may differ only
minimally in composition or struc-
ture but may exhibit significant
variation in their targets, activity,
pharmacodynamics, and potential
for toxicity or unanticipated adverse
effects. When identifying and de-
v eloping a protein drug, it is crucial
to have a full understanding of the
scope and diversity of a protein
family and the potential for cross-
reactivity and unintended effects of
its members.

Human growth factors represent
an excellent and well-studied family
of proteins for pharmaceutical de-
velopment. They are capable of
stimulating cellular proliferation,
maturity, and differentiation, in-
cluding the various types of cells that
comprise mature blood vessels. At
least two families of growth factors
have proven angiogenic potency: FGFs
and VEGFs (Losordo 2004). Numerous
clinical studies have explored the potential for using these
and other proteins known to play a
role in tissue repair and angiogene-
sis — including colony granulocyte
stimulating factor (CGSF), HGF, and
platelet-derived growth factor
(PDGF) — to simulate angiogenesis
in an ischemic tissue or organ. These
early trials typically employed intra-
venous delivery of the therapeutic
protein and, although they showed
this treatment approach to be safe,
they did not consistently demon-
strate statistically significant efficacy.
As a result, the hope of using protein-based angiogenic therapy to
treat ischemic CAD was abandoned
in recent years.

STILL THE WAY TO GO?
The unsuccessful efforts with
gene or cell-based angiogenic ther-
apy has rekindled interest in devel-
oping protein drugs capable of stim-
ulating the growth of new blood
vessels. Newer approaches to treat-
angioCAD involve the injection of
angiogenic proteins directly into the
heart. Whereas localized perivas-
cular delivery requires open-chest
surgery or, perhaps, thoracoscopic,
intrapericardial instillation of
growth factors can be achieved by
way of catheter delivery (Simons
2000). Even with intracoronary ad-
ministration of angiogenic protein
factors, the potential risks associated
with systemic recirculation still exist
(Simons 2000). Overall, protein ther-
apy offers controlled dosing, the
ability for combined delivery of mul-
tiple proteins, and a well-accepted
safety profile (Post 2001).

VEGF, FGF-2, and FGF-1 repre-
sent the most extensively studied re-
combinant proteins for myocardial
angiogenesis (Freedman 2002). Early
studies have shown evidence of im-
provement in blood perfusion, angin-
al symptoms, exercise capacity,
quality of life, and reduced use of
anti-anginal drugs compared with
placebo or baseline findings (Freed-
man 2002, Syed 2004). These studies,
however, often involved patients
undergoing concomitant bypass
surgery, making it difficult to differ-
entiate the effects of the two proce-
dures. Further, the results of VEGF
and FGF-2 studies suggest that read-
ministration of the proteins is not
associated with anti-growth factor
antibody production (Simons 2000).

The FGF family of growth factors
consists of 22 known proteins,
which tend to have a high affinity
for heparin-based compounds and
can induce a range of cellular func-
tions when they bind to cell surface
receptors in the presence of heparin
proteoglycans. They are expressed
on endothelial cells, smooth muscle
cells, and myoblasts. FGF-1, -2, and
-4 are highly angiogenic and may
function synergistically with VEGF
(Losordo 2004). FGFs trigger a sig-
naling cascade that results in the ac-
tivation of genes required for
growth and replication of endothe-
rial cells, fibroblasts, and smooth
muscle cells. FGF-1 is the broadest
acting known member of the FGF
family and is capable of stimulating
the development of new blood ves-
sels ranging in size and maturation
from small capillaries to larger ar-
terioles and fully functional arteries.

Clinical studies using localized
administration of human FGF-1
ON THE HORIZON

Various gene, cell-based, and recombinant protein therapies have yielded promising results in no-option heart patients. Stegmann (2000) followed 33 patients with three-vessel CAD treated with intramyocardial injection of FGF-1 as an adjunct to bypass surgery for 3 years. No side effects or signs of tumor induction were reported and, compared with a control group that received heat-denatured FGF-1, the patients had a three-fold increase in vascular density (Schumacher 1998). Evidence of neoangiogenesis and improved blood flow and function of the heart muscle persisted for the three-year study period. A second trial of no-option CHD patients treated with FGF-1, completed in 2000, also demonstrated improved myocardial perfusion, with patients both at rest and under stress, as well as improved maximum working capacity in 90 percent of treated patients (Stegmann 2000). Findings from these two European studies were subsequently confirmed in a U.S. phase 1 clinical trial (Simons 2000).

In general, these three trials used, in various combinations, angiograms to localize the ischemic region of the heart, SPECT imaging to assess blood flow, and direct injection of FGF-1 into the heart via surgical mini-thoracotomy. None showed serious adverse events. Pharmacokinetic data revealed that once FGF-1 leaves the heart, the body clears it from circulation within three hours, minimizing risk of the protein stimulating unwanted angiogenesis in other organs or tissues, including the kidneys and the retina.

REFERENCES

DISCLOSURE

Jack Jacobs, PhD, is an officer and on the board of directors of Cardio-Vascular BioTherapeutics.